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the Y axis is in the abplane normal  to the X axis and 
the Z axis is normal  to the XYplane .  The deviations of 
the atoms f rom this plane are C(1),-0.002 A" C(2), 
0-022 A;  C(3),-0.002A; N,-0.010 ]k 

Intermoleeular hydrogen bonding 

A view of the structure projected down the c axis is 
shown in Fig. 5. The molecules in the lattice are held 
together by a three-dimensional  network of hydrogen 
bonds. There are three protons available with the 
- N H  + group. The nitrogen atom has three close 
neighbours and all of  them are chloride ions. The 
distances f rom the nitrogen a tom to CI, CI(I) and 
CI(II) are 3.21, 3.25 and 3.20 A~ respectively. The pro- 
tons are oriented almost tetrahedrally towards these 
ions, with respect to the C(2)-N bond. The angles 
N - H . . . C 1  indicate that  these hydrogen bonds are 
fairly linear. The values of the hydrogen bond lengths 
and angles are given in Table 4. 
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suggestions. His thanks are due to the authorities of  

Table 4. Hydrogen bonding distances and angles 

X-H. • -Y X. • -Y 
N-H-. • CI 3"21 ]k 
N-H.- .  Cl(I) 3"25 
N - H . .  • CI(II) 3.20 

C(2)-N. • • C1 102.8 o 
C(2)-N... Cl(I) 107.4 
C(2)-N. • • Cl(II) 116.2 

Standard  molecule at  
Molecule I at  
Molecule II 

X-H H. • .Y 
0.90 A 2.32 A 
1.15 2.11 
0.94 2.99 

N-H(1). • • el  170-6 o 
N-H(2). • • el(I) 169.5 
N-H(3). • .Cl(II) 166.3 

x y z 
x l + y  z 

at l - - x  1 - -y  1- -z  
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Least-Squares Weighting Schemes for Diffraetometer-Colleeted Data. 
II. The Effeet of Random Setting Errors 
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An analysis is made of the weighting function derived on the basis of counting statistics and random 
setting errors for a constant-time diffractometer experiment. It is shown that these two random errors 
must make a major contribution to the weighting function and a practical application of this function is 
discussed in detail. 

Introduction 

It has been shown (Killean, 1967a) that, on considera- 
tion of counting statistics alone, the weighting schemes 

for constant-count and constant-t ime experiments are 
very different, and that  the weights obtained for the 
constant-t ime experiment are not suitable for a satis- 
factory least-squares refinement. These weighting 



D. F. G R A N T ,  R. C. G. K I L L E A N  AND J. L. L A W R E N C E  375 

schemes take no account of other random errors and 
this paper shows that consideration of these errors 
modifies the previously obtained weights to give a sat- 
isfactory weighting scheme for the constant-time exper- 
iment. 

The modified weighting scheme 

Considering counting statistics alone, the variance of 
Fo(h) is: 

K . ( I+  B) 
er~[F(h)]= 4Lp ( f - B )  ' 

where I is the peak count and B is the background 
count for F(h). Consequently the least-squares weight is 

4 L p  ( I -B)  
w(h)= K (l+B) " 

;r 

1'0 
÷ + 

0 2 4 6 8 

',6 (h)/o [F(h)]i 2 

Fig. 1. Plot of  log N against {A(h)/o-[F(h)]}2 showing that  log 
N =  1 .976-0 .227  {A(h) /a[F(h) ] }2 or N = 9 4 . 6  exp [ - ( 1 . 0 5 / 2 )  
{3 (h ) /a [F(h) ]  }2]. 
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Fig .2 .  T h e  f r e q u e n c y  d i s t r i b u t i o n  o f  A(h)/a[F(h)] c o m p a r e d  
wi th  N =  94.6 exp  [( - 1.05/2) {,d(h)/a[F(h)]}2], the  c o n t i n u o u s  
curve. 

It is well known that for several random, but uncor- 
related, errors in a measurement, 

er2[f(h)l = _r er~[F(h)l. 
i 

It is likely that in a diffractometer experiment these 
errors have a major contribution er2[F(h)] from small 
random setting errors resulting from the reflexion being 
measured off peak-centre. To a reasonable approxima- 
tion, for a given crystal the peak shape near the track 
through the centre is the same for all reflexions. This 
implies that er2[F(h)] has the form 

erz[F(h)] 
= C ,  

. . . . . .  

IF(h)l 

where c is a constant for a given crystal. Since, owing 
to setting errors, the measured intensity is always less 
than that measured through the peak centre the con- 
sequential errors will appear not to be distributed about 
this maximum intensity. However, it must be remem- 
bered that the same empirical scale factor, K, is applied 
to all intensities and hence the distribution of these 
errors may be considered to be symmetrical about the 
presumed maximum intensity. Consequently, an im- 
proved weighting scheme is given by 

erE[ F (h) ] = er~[ F (h) ] + o-~[ F (h) ] 

[ K . (I+B) ]1/2 
a[r(h)]= ~- Lp ( I - B )  +c21F(h)12 ' 

which gives a better approximation for w(h) as 

1 K (I + B) 
- -  + c Z l F ( h ) [  2 . 

w(h) 4 Lp ( I -  B) 

The problem now consists in determining c so that 
numerical values can be given to the weights of [F(h)]. 

It has been shown that the theoretically obtained R 
index can be calculated as a function of er[F(h)] (Killean, 
1967b), and consideration of the distribution function 
for [F(h)[ gives 

[ K (I+B) ]1/2 
R =  2 . . . . . . . . .  f 4 Lp "( I -B)  +c2[r(h)[2 

X Ir(h)l 

Using a sensible weighting scheme (e.g. Hughes, 1941), 
this theoretical R index can be approached by least- 
squares refinement, and the theoretical R index based 
only on the counting statistics calculated. Unfortu- 
nately, owing to the form of the equation for B, it is 
very difficult to compute the value of c. This difficulty 
can be resolved by using the G factor, defined by Kitai- 
gorodski (1957), as a measure of goodness-of-fit. 

S IA(h)l 2 Z" erE[F(h)] 
G 2 =  h ......... _ h _ _  - . . . . . . . .  

X IF(h)] 2 X IF(h)l 2 
h 

X er~[F(h)] 
_ _  h 

_ ._~]_F(h)]2 + C2.  
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The value of c 2 can be obtained from this equation 
by using the value of G 2 obtained experimentally. Indi- 
vidual weights for each of the m structure factors can 
then be computed and it should be possible to obtain, 
after minimizing with respect to the n parameters, a 
value for 27 w0a)lA(h)l 2 close to its theoretical limit of 
( m - n ) ,  provided other errors, e.g. errors in atomic 
form factors, are small (Computing Methods in Crystal- 
lography, 1965). 

Clearly, if a large change in R and, consequently, 
the G factor results, it may be necessary to recompute 
c 2. Now that an absolute value of a[F(h)] has been 
obtained, it is possible, before further refinement, to 
give zero weight to those values of IF(h)l which are 
obviously subject to non-random errors. 

Application]to a crystal structure 

Trichlorotrimethylaminealuminum(III) crystallizes in a 
monoclinic space group with 

a=6.81 +0-02, b= 10.66+0.03, c=7.31 +0.02 A~ 

f l = 1 1 8 ° 0 ' + 5  ' 
Z = 2 .  

Systematic absences 0k0 for k = 2n + 1. 
The space group is either P2~ or P2i/m with, in the 

latter case, half the molecule forming the asymmetric 
unit. Inspection of the Patterson function indicates a 
mirror plane for the heavy atoms making it difficult 
to determine which of the space groups is correct. 
Indeed it is possible by least-squares refinement using 
a Hughes scheme to obtain an R value of approxima- 
tely 0.08 in either space group with, in P2a, a signi- 
ficant departure of the atoms from their mirror posi- 
tions. The value of the constant e was computed as 
0.075 from equation (1). The individual weight for each 
structure factor was calculated from 

1 K (I+B) 
w(h) - 4 Lp ( I -  B) + 0"00561F(h)12 

and from this the individual standard deviation for 
each reflexion was obtained. The structure was refined 
in both space groups and gave: 

Space group P21/m 
R=0.086;  Z w(h) IA(h)12=823; m - n = 5 6 5  

h 

2; w(h)IA(h)l 2 
h = 1"46. 

m--n 

Space group P21 

R=0.082;  27 w(h) IA(h)lZ=713; m - n = 5 3 5  

Z w(h) Izl(h)l 2 
h _ _  -~- 1"33. 

m - n  

The deduction made from the values 27 w(h)IA(h)lZ/ 
h 

( m - n )  is that, provided the weights w(h) are absolute, 
then the structure in space group P2a is to be preferred. 
The value of 27 w(h) [A(h)lZ/(m-n) for the space group 
P2~ is in itself evidence for supposing the weights to 
be absolute. A further check on the absoluteness of 
the weights was made by computing the distribution 
of A(h)/a[FOa)] and obtaining the best-fit Gaussian 
curve from the constants obtained from Fig. 1. Fig.2 
shows the Gaussian curve and the experimental points. 
It is clear that apart from close to the origin of 
A(h)/a[F(h)] the fit is good. The standard deviation of 
the best-fit curve departs from the theoretical value by 
less than 2.5%. There are nine structure factors with 
A(h)/a[F(h)] > 3 and most of them are probably subject 
to non-random errors. 

These nine structure factors were given zero weight 
and the structure refined again in P21. The R value, 
including these nine terms, was reduced to 0-078 but 
more significantly Z w(h) IA(h)12/(m-n) was now 1-04, 

h 

justifying the choice of space group and the relevance 
of the weighting scheme. 

Conclusions 

It has been shown that a reasonable estimate of az[F(h)] 
is given by 

az[V(h)]=elF(h)l , 

which, when combined with al[F(h)], gives a value of 
27 w(h) IA(h)l 2 approximately equal to ( m - n )  and a dis- 
h 

tribution of 
A(h) 

{ Z o'il[F(h)]}l/z 
i 

which conforms to that theoretically expected. 
The weight of a structure factor is 

w(h) = {~[F(h)] + ~[F(h)]} -i , 

where O'l[F(h)], in this paper, is that for a constant- 
time experiment, but is easily calculated for other types 
of diffractometer experiment (Killean, 1967a). 
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